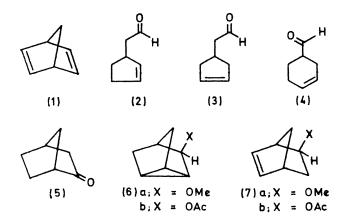
The High-temperature Hydration of Norbornadiene¹

By NICK H. WERSTIUK* and T. KADAI


(Department of Chemistry, McMaster University, Hamilton, Ontario, Canada)

Summary The high-temperature hydration of norbornadiene at 250° in 10% HOAc- H_2O initially yields norbornenols, nortricyclanol, and norbornanediols which are gradually converted into cyclopent-2- and -3-eneacetaldehydes, cyclohex-3-enecarboxaldehyde, and norcamphor.

The acid-catalysed additions of methanol and acetic acid² to norbornadiene (1) at $25\rightarrow 230^{\circ}$ yield a mixture of (6a), (7a) and (6b), (7b), respectively. Norbornadiene, in acetic acid-BF₃, yields a mixture of norbornyl diacetates.³

We have found that the hydration of (1) in 10% HOAc-H₂O at 250° *initially* yields norbornenols, nortricyclanol, and norbornanediols, which are gradually converted into (2), (3), (4), and (5). The results of a preliminary study are shown in the Table.

That the reaction is acid-catalysed is shown by entries i and v. Entries i and iv clearly show that (1) rapidly gives norbornenols, nortricyclanol, and norbornanediols, which are converted into (2), (3), (4), and (5) via rearrangement⁴ and cleavage processes.⁵ The preparation of (4), (5)

and especially (2) and $(3)^6$ in one step from (1) and aqueous acetic acid is remarkable. When nortricyclanol is heated in 10% HOAc-H₂O at 250° (2), (3), (4), and (5)⁷ are formed.

Norcamphor is most likely formed (a) via enols produced by 1,2- and 1,3-eliminations of a proton or H_2O and (b) from appropriate hydroxy-substituted cations by a 2,3- or 2,6hydrogen shift.⁴ Cleavage of a 1,6- or a 1,7-bond in suitable hydroxy-cations would yield the aldehydes.⁵

some other mechanism which involves HOAc-AcO-. That is, the hydrogens are exchanged prior to formation of the final products by a protonation-deprotonation pathwayt

			Rel. % yield ^b					% Yield ^a		D/molecule ^e		
Entry ^a	Time (h)	(2) + (3)	(4)	(5)	Diols	Otherc	(2) + (3) + (4)	(5)	(2) + (3)	(4)	(5)	
i	0.5	4	3	8	55	30						
ii	1.5	15	18	40	20	7						
iii	3	17	19	45	15	4						
iv	9.5	14	17	54	14	1	21	33	$2 \cdot 5$	2.6	$2 \cdot 4$	
vf	10	norborn	adiene -	⊦ polyme	er							

Data for the hydration of norbornadiene at 250°

^a Typically, a solution of (1) in 10% (v/v) HOAc-H₂O or 10% (v/v) DOAc-D₂O was de-gassed and heated in a sealed tube. ^b The relative percent yields were determined by g.l.c. on $\frac{1}{3}$ in. \times 10 ft. 10% SE-30 and 10% Carbowax on Chromosorb W columns.

° The norbornenols and nortricyclanol are included here.

^d The yields were determined by preparative g.l.c. Each is corrected for collection losses.

^e The enolizable deuterium in (2), (3), and (4) was washed out by three injections through a $\frac{3}{2}$ in. \times 10 ft. 5% KOH + 20% Carbowax column maintained at 170°. (5) was treated three times with a KOH-MeOH-H₂O solution.

¹ The reaction was run in H₂O only.

When (1) is heated in deuteriated medium (entry iv), (2) and (3) combined, (4), and (5) contain 2.5, 2.6, and 2.4nonenolizable deuterium atoms, each a composite of up to ${}^{2}H_{6}$ -species. Control experiments have shown that (a) >95% of the deuterium must be incorporated into (2), (3), and (4), prior to cleavage and (b) deuterium is not incorporated into (5)[†] via acid-catalysed homoenolization⁸ or which includes as steps 1,2-Wagner-Meerwein shifts, 2,6and 2,3-hydrogen shifts and 1,2- and 1,3-eliminations of a proton.

We thank the National Research Council of Canada and the Department of University Affairs (Ontario) for financial support.

(Received, September 28th, 1970; Com. 1653.)

Camphenilone also incorporates no deuterium on treatment with 10% $DOAc-D_2O$ or 10% $CF_3CO_2D-D_2O$ at 250° for 120 h. Interestingly, when norbornene is heated in 10% $DOAc-D_2O$ at 250° for 15 h, the resulting *exo-2-*, *endo-2*-norborneol mixture 200 entering 2 deutering the matching of the transformation of the transformat (80:20) contains 8.3 deuterium atoms per molecule, a composite of up to ${}^{2}H_{11}$ species. Experiments with other substrates are presently under way to determine whether or not these conditions are useful generally to prepare perdeuterio-materials.

¹ Presented in part at the Joint Meeting of the American Chemical Society and Chemical Institute of Canada, Toronto, May, 1970.

² S. J. Cristol, W. K. Seifert, D. W. Johnson and J. B. Jurale, J. Amer. Chem. Soc., 1962, 84, 3918; S. J. Cristol, T. C. Morrill, and R. A. Sanchez, J. Org. Chem., 1966, 31, 2726; 2733.

 ³ H. Krieger, Suomen. Kem., 1962, 35B, 127.
⁴ B. M. Benjamin and C. L. Collins, J. Amer. Chem. Soc., 1966, 88, 1556; J. A. Berson, J. H. Hammons, A. W. McRowe, R. G. Bergman, A. Remanick, and D. Houston, ibid., 1967, 89, 2590; A. W. Bushell and P. Wilder, ibid., p. 5721.

⁵S. J. Cristol and R. K. Bly, J. Amer. Chem. Soc., 1960, 82, 6155; D. E. Gwynn and L. Skillern, Chem. Comm., 1968, 490; V. K. Jones and L. B. Jones, Tetrahedron Letters, 1970, 3171.

⁶ For synthesis of cyclopent-3-ene-ethanols, see E. L. Allred, J. Sonnenberg, and S. Winstein, J. Amer. Chem. Soc., 1959, 81, 5833;
J. Org. Chem., 1960, 25, 26; R. G. Lawton, J. Amer. Chem. Soc., 1961, 83, 2399.

⁷ N. H. Werstiuk and T. Kadai, results to be published.

⁸ A. Nickon and J. L. Lambert, J. Amer. Chem. Soc., 1966, 88, 1905.